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Abstract
A bilinear variable separation approach is used to construct some special
solutions for a differential-difference Toda equation. The semi-discrete form
of the continuous formula which describes some types of special solutions for
many (2 + 1)-dimensional continuous systems is found for a suitable quantity
of the differential-difference Toda equation. Thus abundant semi-discrete
localized coherent structures are constructed by appropriately selecting the
arbitrary functions.

PACS numbers: 02.30.Ik, 05.45.Yv

1. Introduction

It is very difficult to find explicit exact solutions for both nonlinear partial differential equations
(PDEs) and nonlinear differential-difference equations (DDEs). In linear mathematical
physics, the Fourier transform method and the variable separation approach are the two
most effective ways to find exact solutions of linear equations. In nonlinear mathematical
physics, the so-called inverse scattering transformation (IST) serves as a ‘nonlinear’ Fourier
transform for nonlinear integrable models. However, it is very difficult to extend the variable
separation approach to nonlinear cases even for integrable systems.

Recently, several kinds of ‘variable separation’ approaches have been established, i.e. the
classical method, the differential Stäckel matrix approach [1], the geometric method [2], the
ansatz-based methods [3, 2], the functional variable separation approach [4], the derivative-
dependent functional variable separation approach [5] and the formal variable separation
approach (nonlinearization of the Lax pairs or symmetry constraints) [6].
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In the study of the exact solutions for the nonlinear systems, Hirota’s bilinear direct
method [7] (and trilinear method [8]) is an excellent simple approach for finding solutions
such as multiple soliton solutions, rational solutions and τ function solutions. Recently, the
bilinear and trilinear (multi-linear in general) forms have been used to find a variable separation
approach for a diversity of (2 + 1)-dimensional systems, including the Davey–Stewartson (DS)
equation, the Nizhnik–Novikov–Veselov (NNV) equation, the modified NNV equation, the
asymmetric NNV equation, the asymmetric DS equation, the dispersive long wave equation,
the Broer–Kaup–Kupershmidt (BKK) system, the higher-order BKK system, the nonintegrable
(2 + 1)-dimensional KdV equation, the (2 + 1)-dimensional Burgers equation, the long wave–
short wave interaction model, the Maccari system, the general (N + M)-component AKNS
system and the (2 + 1)-dimensional sine-Gordon model [9–15]. In [11], a quite universal
formula

U ≡ 2(a1a2 − a0a3)qypx

(a0 + a1p + a2q + a3pq)2
(1)

is derived to describe some special solutions for some suitable physical quantities of all the
(2 + 1)-dimensional multi-linear variable separation approach (MLVSA) solvable models
mentioned above. In equation (1), a0, a1, a2 and a3 are arbitrary constants, p is an arbitrary
function of {x, t} for all the known MLVSA solvable models, while q of (1) may be an arbitrary
function of {y, t} for some of the MLVSA solvable models, or an arbitrary solution of a
special equation (say, the Riccati equation or diffusion equation) for of some other MLVSA
solvable models. Because of some arbitrary characteristics, lower-dimensional functions
(such as p), have been included in the formula (1) by selecting them appropriately, abundant
localized structures such as multiple solitoffs, dromions, lumps, breathers, instantons, peakons,
compactons, foldons, ghostons, ring solitons and chaotic and fractal patterns have been found
[11].

In this paper, we are interested in an important question: can the MLVSA be extended to
solve some nonlinear DDEs? In sections 2 and 3, the bilinear variable separation approach
(BLVSA), a special case of the MLVSA, is applied to a special differential-difference Toda
equation (SDDTE). A semi-discrete form of the formula (1) for a suitable quantity of the
SDDTE is given in section 4, from which abundant semi-discrete localized excitations are
constructed and depicted. The last section contains the conclusions and discussions.

2. SDDTE and its generalized bilinear form

In nonlinear discrete and semi-discrete physical systems, the most famous and important
systems are the so-called Toda systems which are widely used in physics [16]. In this paper,
we only consider a special differential-difference Toda equation (SDDTE)

Q(n)yt = exp[Q(n + 1) − Q(n)][Q(n + 1) + Q(n)]y
− exp[Q(n) − Q(n − 1)][Q(n) + Q(n − 1)]y (2)

where Q(n) ≡ Q(n, y, t) is a function of the discrete variable n and the continuous variables
{y, t}. The SDDTE (2) was first derived by Cao et al in a remarkable paper [17]. Some
interesting integrable properties of the SDDTE (2) have been given in [17, 18]. Although
it is unclear whether the SDDTE (2) has any direct physical application, this equation
seems mathematically interesting. For example, let us consider the continuous analogue of
equation (2). Setting

Q(n, y, t) = εu
(
nε + 2εt, y,− 1

3 tε3
)

nε + 2εt = x − 1
3 tε3 = T (3)
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we have Q(n ± 1, y, t) = εu(x ± ε, y, T ) and

Q(n ± 1, y, t) = εu(x, y, T ) ± ε2 ∂

∂x
u +

ε3

2

∂2

∂x2
u ± ε4

6

∂3

∂x3
u + · · · . (4)

Substituting these expressions into (2), we have

−ε2

3
[−6uxy + ε2uyT ] − ε

6
[12uy + 6εuxy + 3ε2uxxy + ε3uxxxy]

× exp

(
ε2

6
[6ux + 3εuxx + ε2uxxx + O(ε3)]

)

− ε

6
[−12uy + 6εuxy − 3ε2uxxy + ε3uxxxy]

× exp

(
ε2

6
[6ux − 3εuxx + ε2uxxx + O(ε3)]

)

= −1

3
(uyT + uxxxy + 6uxyux + 6uxxuy)ε

4 + O(ε5) = 0. (5)

From (5), we know that (2) possesses a continuous analogue

uyT + uxxxy + 6uxyux + 6uxxuy = 0 (6)

which is equivalent to the Ito equation [19] by a simple transformation.
To get some exact solutions of the SDDTE (2) via BLVSA, one can use the following

dependent variable transformation to bilinearize it:

Q(n) = ρ(n) + ln

(
f (n + 1)

f (n)

)
. (7)

In the transformation (7), ρ(n) ≡ ρ(n, t), the seed solution of the SDDTE, has been selected
as an arbitrary function of {n, t} for convenience later.

Substitution of the dependent variable transformation (7) into the SDDTE yields

(T+ − 1)

(
DyDtf (n) · f (n) − 2 exp[ρ(n) − ρ(n − 1)]Dy exp(Dn)f (n) · f (n)

2f (n)2

)
= 0 (8)

where T+ is a shift operator, i.e., T+F(n) = F(n + 1); Hirota’s bilinear differential operator
Dm

y Dk
t and the bilinear difference operator exp (Dn) are defined by

Dm
y Dk

t a · b ≡
(

∂

∂y
− ∂

∂y ′

)m (
∂

∂t
− ∂

∂t ′

)k

a(y, t)b(y ′, t ′)

∣∣∣∣∣
y=y ′,t=t ′

exp(δDn)a(n) · b(n) ≡ exp

[
δ

(
∂

∂n
− ∂

∂n′

)]
a(n)b(n)

∣∣∣∣
n=n′

≡ a(n + δ)b(n − δ).

Multiplying (8) by the inverse operator of T+ − 1 leads to a generalized bilinear SDDTE

DyDtf (n) · f (n) − J (n, t)Dy exp(Dn)f (n) · f (n) + R(y, t)f (n)2 = 0 (9)

where

J (n) ≡ 2 exp[ρ(n) − ρ(n − 1)] (10)

is an arbitrary function of {n, t} and R(y, t), the kernel of the difference operator T+ − 1, is an
arbitrary function of {y, t}.
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3. Variable separation solutions of the SDDTE

In order to find some exact solutions of (9), similar to the continuous cases [9–11], we look
for the solutions of (9) in the form

f (n) = a0 + a1p(n, t) + a2q(y, t) + a3p(n, t)q(y, t) (11)

where a0, a1, a2 and a3 are arbitrary constants and the variable separated functions q(y, t) ≡ q

and p(n, t) ≡ p(n) are only functions of {y, t} and {n, t}, respectively. Equation (11) looks
like Hirota’s two-soliton form when q and p(n) are exponential functions. Substituting the
ansatz (11) into (9), we have

−2(a2 + a3p(n))2qyqt + 2(a3a0 − a2a1)qyp(n)t + 2(a2 + a3p(n))(a0 + a1p(n)

+ a2q + a3p(n)q)qyt − J (n)(p(n + 1) − p(n − 1))(a3a0 − a2a1)qy

+ R(a0 + a2q + a1p(n) + a3qp(n))2 = 0. (12)

Because p(n) and J (n) are functions of {n, t}, and q and R are functions of {y, t}, (12) can
be separated into the following two equations,

qt = (a0 + a2q)2c1 + (a1 + a3q)2c2 + (a0 + a2q)(a1 + a3q)c3 (13)

pt(n) = (a0a3 − a1a − 2)(c2 − c3p(n) + c1p(n)2) + 1
2J (n)(p(n + 1) − p(n − 1)) (14)

when the arbitrary function R is selected as

R = −2
(
c1a

2
2 + c2a

2
3 + c3a2a3

)
qy (15)

with c1 ≡ c1(t), c2 ≡ c2(t) and c3 ≡ c3(t) being arbitrary functions of t.
In principle, as long as the arbitrary functions c1, c2, c3 and ρ(n) (and then J (n)) are

fixed, we can obtain the corresponding special solutions of (13) and (14) and then the special
solutions of the SDDTE (2). However, it is still very difficult to solve the nonlinear DDE (14)
for fixed nonzero J (n). Fortunately, just as in the continuous cases [9–15], the arbitrariness
of the function J (n) allows us to treat the problem alternatively. Consider the function p(n)

as an arbitrary function of the variables n and t, and the function J (n) is defined by

J (n) = 2

p(n − 1) − p(n + 1)
[(a0a3 − a1a − 2)(c2 − c3p(n) + c1p(n)2) − pt(n)]. (16)

It should be pointed out that the Riccati equation (13) is totally the same as that of the
asymmetric NNV equation [11]. To find some special solutions of (13), one may select the
arbitrary functions appropriately. Here we list two special selections.

(1) If we write c1, c2 and c3 as

c1 = a2
3A2t

(a1a2 − a0a3)2
− a3(a1 + a3A2)A1t

(a1a2 − a0a3)2A1
− (a1 + a3A2)

2A3t

(a1a2 − a0a3)2A1
(17)

c2 = a2
2A2t

(a1a2 − a0a3)2
− a2(a0 + a2A2)A1t

(a1a2 − a0a3)2A1
− (a0 + a2A2)

2A3t

(a1a2 − a0a3)2A1
(18)

c3 = (a0a3 + a1a2 + 2a2a3A2)A1t

(a1a2 − a0a3)2A1
− 2a2a3A2t

(a1a2 − a0a3)2
+ 2

(a0 + a2A2)(a1 + a3A2)A3t

(a1a2 − a0a3)2A1

(19)

with A1 ≡ A1(t), A2 ≡ A2(t) and A3 ≡ A3(t) being arbitrary functions of t, then the
general solution of (13) with (17)–(19) reads

q = A1

A3 + F1(y)
+ A2 (20)

where F1 ≡ F1(y) is an arbitrary function of y.
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(2) If we select c1, c2 and c3 as

c1 = a2
3b0t

(a1a2 − a0a3)2
− a3(a1 + a3b0)b1t

(a1a2 − a0a3)2b1
−

[
(a1 + a3b0)

2 − b2
1a

2
3

]
b2t

(a1a2 − a0a3)2b1
(21)

c2 = a2
2b0t

(a1a2 − a0a3)2
− a2(a0 + a2b0)b1t

(a1a2 − a0a3)2b1
−

[
(a0 + a2b0)

2 − a2
2b

2
1

]
b2t

(a1a2 − a0a3)2b1
(22)

c3 = (a0a3 + a1a2 + 2a2a3b0)b1t

(a1a2 − a0a3)2b1
− 2a2a3b0t

(a1a2 − a0a3)2

+ 2

[
(a0 + a2b0)(a1 + a3b0) − a2a3b

2
1

]
b2t

(a1a2 − a0a3)2b1
(23)

with b0 ≡ b0(t), b1 ≡ b1(t) and b2 ≡ b2(t) being arbitrary functions of t, then the general
solution of (13) with (21)–(23) reads

q = b1 tanh (b2 + F2(y)) + b0 (24)

with F2 ≡ F2(y) being an arbitrary function of y.

4. Abundant coherent structures for the SDDTE

Substituting all the results obtained in the last section into (7) we arrive at many kinds of exact
solutions for the field Q of the SDDTE. In continuous cases, for every MLVSA solvable system
listed in [11], there exists a quantity whose special solutions can be expressed by the formula
(1). Naturally an important question arises: is there a suitable quantity for the SDDTE such
that it can be described by a suitable semi-discrete form of the formula (1)?

Fortunately, it is straightforward to prove that if we define a quantity of the SDDTE as

u ≡ −2Qy(n) (25)

then

u = U(n) ≡ 2qy(a2a1 − a3a0)(p(n + 1) − p(n))

(a0 + a2q + a1p(n) + a3qp(n))(a0 + a2q + a1p(n + 1) + a3qp(n + 1))
. (26)

Obviously, the function U(n) defined in (26) is just a suitable semi-discrete form of the
continuous quantity U given by (1). The function U(n) is semi-discrete since it is discrete in
one direction and continuous in the other direction.

Now starting from the semi-discrete quantity u expressed by (26), we can obtain
abundant semi-discrete localized excitations for the SDDTE by selecting the arbitrary functions
appropriately.

Detailed studies show that the semi-discrete localized structures for u are very similar to
the continuous ones which have been discussed in [11]. So here, we will not discuss all the
possible localized excitations but only list some particular examples.

Example 1. Resonant semi-discrete dromions and solitoff solutions

If we restrict the functions p(n) and q of (26) as

p(n) =
N∑

i=1

exp(kin + ωit + x0i ) ≡
N∑

i=1

exp(ξi) (27)
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Figure 1. Four typical semi-discrete structures of SDDTE for the field u expressed by (25) with
(27) and (28): (a) a special single-peak semi-discrete resonant dromion solution; (b) a single semi-
discrete solitoff solution; (c) a multi-peak semi-discrete dromion solution and (d) a semi-discrete
four-solitoff solution.

q =
M∑
i=1

exp(Kiy + y0i )

J∑
j=1

exp(�j t + t0j ) (28)

where x0i , y0i , t0j , ki, ωi,Ki and �i are arbitrary constants, M,N and J are arbitrary positive
integers, then we have a single resonant semi-discrete dromion solution or semi-discrete
multiple solitoff solutions. The selection (28) is related to the selections of the functions
Ai (i = 1, 2, 3), F1 in (20) which are

A3 = A2 = 0 (29)

A1 =
J∑

j=1

exp(�j t + t0j ) (30)

F1 = 1∑M
i=1 exp(Kiy + y0i )

(31)

and ci (i = 1, 2, 3) are given by (17)–(19) with (29) and (30).
In figure 1, we plot four typical structures caused by the resonant effects of four straight-

line semi-discrete soliton solutions.
Figure 1(a) shows the structure of a first type of single resonant semi-discrete dromion

solution expressed by (25) with (27), (28),

M = N = 2 J = k1 = K1 = 1 k2 = K2 = 1
3

a0 = 1 a1 = a2 = 10 a3 = 1
2

(32)

and

x01 = y01 = t01 = x02 = y02 = 0 (33)

at t = 0.
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Figure 2. Plot of a special oscillating lump solution of the SDDTE for the quantity u expressed
by (25) with (37) and (38) at t = 0.

Figure 1(b) is a plot of a single resonant semi-discrete solitoff solution shown by (25)
with (27), (28), (33) and

M = N = 2 J = k1 = K1 = 1 k2 = K2 = 1
3 (34)

a0 = 1 a1 = a2 = 3 a3 = 0 t = 0.

Figure 1(c) reveals the structure of a second type of single semi-discrete resonant dromion
solution described by (25) with (27), (28), (33) and

M = N = 2 J = k1 = −K1 = 1 −k2 = K2 = 1
3 (35)

a0 = a2 = 10 a3 = 1 a1 = 1
2 t = 0.

Figure 1(d ) is a plot of a four-solitoff solution shown by (25) with (27), (28), (33) and

M = N = 2 J = k1 = −K1 = 1 −k2 = K2 = 1
3 (36)

a0 = 1 a1 = a2 = 3 a3 = 0 t = 0.

Example 2. Semi-discrete oscillating dromions and lumps

If some periodic functions in space variables are included in the functions p(n) and q of (25),
we may obtain some types of semi-discrete multi-dromion and multi-lump solutions with
oscillating tails. The oscillating lump solution plotted in figure 2 is related to

q = 1

1 + [y(cos(y) + 5/4)]2
p(n) = 1

1 + (n − ct)2
(37)

a0 = a3 = 1 a1 = a2 = 5 (38)

at t = 0.

Example 3. Multiple ring soliton solutions

In high dimensions, in addition to the point-like localized coherent excitations, there may
be some other types of physically significant localized excitations. Recently, we have found
some different kinds of ring soliton solutions which are not identically equal to zero at some
closed two-dimensional and three-dimensional curves and decay exponentially away from the
curves [15, 20–22].
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Figure 3. Plot of a typical single saddle type semi-discrete ring soliton solution for the quantity u
of the SDDTE with the selections (39) and (40) at t = 0.

In figure 3, a typical saddle-type semi-discrete ring soliton solution is plotted for the
quantity u with the selections

q = exp

(
−y2

80
+ 5

)
p(n) = exp

(
(n − ct)2

80

)
(39)

and

a0 = a3 = 0 a1 = a2 = 5 (40)

at t = 0.
Because of the existence of the arbitrariness in expression (25), there exist many kinds of

multiple semi-discrete ring soliton solutions. Since the situations are quite similar to those in
continuous cases, we do not discuss them further. However, it is worth mentioning that (as
pointed out in [11, 12]) if the functions q and p(n) are selected as the linear combinations
of terms such as (39), then the interactions among the travelling ring soliton solutions are
completely elastic without phase shifts. To find the multiple ring solitons with completely
elastic interaction property and phase shifts, more complicated selections are needed [22].

5. Conclusions and discussions

In previous studies [9–15], we have successfully obtained rich classes of exact solutions for
some famous (2 + 1)-dimensional nonlinear continuous integrable models via the MLVSA.
In this paper, we have further applied the BLVSA to find some kinds of exact solutions of a
special differential-difference Toda equation.

In continuous cases, a quite universal formula has been found to describe some types of
special solutions of suitable fields or potentials of MLVSA solvable models. For the SDDTA,
a semi-discrete form of the formula is obtained for a suitable quantity. An arbitrary function
related to the discrete space variable is introduced in the semi-discrete form of the formula (1).
Another function included in the formula is an arbitrary solution of the Riccati equation, and
the Riccati equation is totally the same as that in some continuous MLVSA solvable models.

By selecting the arbitrary functions appropriately, one can construct abundant semi-
discrete localized excitations such as multiple solitoffs, dromions, lumps, breathers, instantons
and ring soliton solutions. The semi-discrete localized solutions are quite similar to those of
continuous cases shown in [11].

In this paper, the special form of the MLVSA, BLVSA, is applied only to the SDDTE.
Nonetheless, the method may be utilized for other higher-dimensional DDEs in a similar way.
The basic steps are summarized as follows.
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For a given DDE in the form of

F(xi, nj , u(xi, nj − k, . . .), uxi
(xi, nj − k, . . .), . . . , i = 1, . . . , N1, j = 1, . . . , N2,

k = 0,±1,±2, . . .) ≡ F(u) = 0 (41)

where xi, i = 1, 2, . . . , N1, are continuous variables, nj , j = 1, 2, . . . , N2, are discrete
variables, the first step is to multi-linearize the original DDE (41) by using a suitable Bäcklund
transformation. Usually, the resulting equations are bilinear equations for many integrable
systems. In the second step, choose a seed solution of the Bäcklund transformation as general
as possible in the sense that it contains one or more arbitrary functions. After that, a suitable
variable separation ansatz with some variable separated functions has to be made. Usually,
the ansatz is just the generalization of Hirota’s two-soliton solution. Next, substitute the
ansatz into the multi-linear equations and separate the resulting equations into several variable
separated ones. The key step to get the variable separable solution is to solve the variable
separated equations. Generally, to solve the variable separated PDEs and/or DDEs is still very
difficult for any fixed seed solution. However, one can treat the problem in an inverse way: the
variable separated functions appearing in the ansatz can be considered arbitrary and then the
function(s) appearing in the seed solution will be fixed from the variable separated equations.
Finally, from appropriate selections of the arbitrary functions included in the obtained variable
separable solution, one may obtain abundant semi-discrete localized excitations of the DDE
under investigation.

From the results of this paper for the SDDTE and the previous ones [9–15] for the PDEs, it
is known that the BLVSA and MLVSA provide some reductions of the given nonlinear systems
(say, (14) and (13) for SDDTE) and the reduction equations can be integrated quite trivially
to provide a rich specific class of exact solutions. Usually, to reduce a high-dimensional
PDE, one can use some kinds of symmetries. In the continuous case, we have known that
the variable separable solutions obtained by the MLVSA can be recovered by the generalized
conditional symmetry approach [26]. For the SDDTE, the situation is similar: finding the
variable separable solution (7) with (11) and (10) via the generalized conditional symmetry
approach is equivalent to finding a constraint equation

η(Q(n),Q(n ± 1), . . . , Qy(n), . . .) = 0 (42)

such that (7) is not only a solution of the original nonlinear DDE (2) but also a solution of
the generalized conditional symmetry constraint equation (42). Whence Q(n) is a solution of
both the SDDTE (2) and the constraint equation (42), we call

V ≡ η(Q(n),Q(n ± 1), . . . ,Qy(n), . . .)
∂

∂Q(n)
(43)

a generalized conditional symmetry of the SDDTE [3, 4]. For simplicity, we just write down
the generalized conditional symmetry constraint equation for the bilinear SDDTE (9):

fyy(n + 1)fy(n) − fyy(n)fy(n + 1) = 0. (44)

It is straightforward to find that f expressed by (11) is not only a solution of the original
bilinear SDDTE but also a solution of (44). The corresponding generalized conditional
symmetry constraint equation for the original field equation (2) can be obtained from (44) and
(7). The result is more complicated and nonlocal.

Though the BLVSA (and the MLVSA) has been applied to many continuous integrable
systems and the SDDTE, there still exist various important open problems which need to be
studied further. For instance, since a continuous integrable system may possess some different
types of integrable discrete forms, is the semi-discrete form of the formula (1) unique? In other
words, how universal is the semi-discrete quantity (26)? In addition to the DDEs, there are
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various fully discrete systems in real physics. Can we extend the MLVSA to solve them? For
some types of continuous systems, an arbitrary number of variable separated functions may
be included by the Darboux transformations (i.e., for the NNV, asymmetric NNV and (2 + 1)-
dimensional sine-Gordon models) [23] or by the extended MLVSA (i.e., for the BKK, the
higher-order BKK, the dispersive long wave and the (2 + 1)-dimensional Burgers equations)
[24]. How to extend the variable separable solution (26) for the SDDTE (perhaps also for
other types of DDEs) such that an arbitrary number of variable separated functions can be
included?

In recent studies of the nonlinear integrable systems, the τ function plays a crucial role.
So it is interesting to construct the τ function solution related to the variable separable solution
(26) for the SDDTE (2). However, we have to leave the problems for our future work because
of the difficulties: (1) though the model does possess a Hirota-type bilinear representation,
the coefficients of the bilinear equation are not constants. Instead, there are two arbitrary
functions J (n, t) and R(y, t). (2) The existing problem of the whole SDDT hierarchy and
then the general τ functions of the hierarchy have not yet been solved.

In the continuous case, though the MLVSA has been applied to various systems, some
other important integrable systems, especially the Kadomtsev–Petviashvili equation and the
Sawada–Kortera equation, have not yet been found suitable for the method. A similar
situation occurs for DDEs. For instance, we still do not know whether the usual (2 + 1)-
dimensional Toda system [25] can be solved by the MLVSA or not. More generally, it is
still open how to exactly answer the general question: when can one apply the MLVSA
successfully?
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